Abstract

A fundamental understanding of ultrafast electron dynamics in solids induced by light is of great interest for future high-speed electro-optical devices operating in the petahertz frequency regime [1]. In the last years, a number of publications demonstrated the possibility to resolve and control carrier dynamics in semiconductors [2,3] and dielectrics [4,5] on the few- to sub-femtosecond time scale using attosecond transient absorption spectroscopy (ATAS). These experiments were performed with a non-resonant pump pulse, i.e. pump photon energies smaller than the corresponding band gap. Here in contrast, we resolve for the first time the attosecond carrier dynamics induced by a resonant intense laser pulse. We study the attosecond electronic response in gallium arsenide (GaAs), a technologically important narrow band gap semiconductor [6].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call