Abstract

AbstractThe influence of chemically different donor species on the nature of shallow donor states in Al0.6Ga0.4As/GaAs heterostructures has been investigated by optically detected magnetic resonance (ODMR). Previous theoretical work by Morgan predicts a triplet state for group IV donors and a singlet state for group VI donors. ODMR experiments were performed on as-grown and implanted Si-, Se-, and S-doped epitaxial layers of Al0.6Ga0.4As grown on (001) GaAs substrates. The effective-mass states are modified by the heter-oepitaxial strain in these layers. The Si donors are characterized as quasi-independent valley states. The Se and S donors have valley-orbit splitting energies (i.e. chemical shifts) of 19-20 meV . The results indicate that Si, Se, and S donors are on the lattice sites in the metastable state of DX.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.