Abstract

While there is great interest in understanding the fate and transport of nanomaterials in the environment and in biological systems, the detection of nanomaterials in complex matrices by fluorescence methods is complicated by photodegradation, blinking, and the presence of natural organic material and other fluorescent background signals that hamper detection of fluorescent nanomaterials of interest. Optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond nanoparticles provides a pathway toward background-free fluorescence measurements, as the application of a resonant microwave field can selectively modulate the intensity from NV centers in nanodiamonds of various diameters in complex materials systems using on-resonance and off-resonance microwave fields. This work represents the first investigation showing how nanoparticle diameter impacts the NV center lifetime and thereby directly impacts the accessible contrast and signal-to-noise ratio when using ODMR to achieve background-free imaging of NV-nanodiamonds in the presence of interfering fluorophores. These results provide new insights that will guide the choice of optimum nanoparticle size and methodology for background-free imaging and sensing applications, while also providing a model system to explore the fate and transport of nanomaterials in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call