Abstract

The direct manipulation of spins via light may provide a path toward ultrafast energy-efficient devices. However, distinguishing the microscopic processes that can occur during ultrafast laser excitation in magnetic alloys is challenging. Here, we study the Heusler compound Co2MnGa, a material that exhibits very strong light-induced spin transfers across the entire M-edge. By combining the element specificity of extreme ultraviolet high-harmonic probes with time-dependent density functional theory, we disentangle the competition between three ultrafast light-induced processes that occur in Co2MnGa: same-site Co-Co spin transfer, intersite Co-Mn spin transfer, and ultrafast spin flips mediated by spin-orbit coupling. By measuring the dynamic magnetic asymmetry across the entire M-edges of the two magnetic sublattices involved, we uncover the relative dominance of these processes at different probe energy regions and times during the laser pulse. Our combined approach enables a comprehensive microscopic interpretation of laser-induced magnetization dynamics on time scales shorter than 100 femtoseconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.