Abstract

Variable damping control technology based on intelligent materials of electromagnetic excitation has been widely used in the field of (semi-) active vibration control and fluid control. Unfortunately, a major drawback is the electromagnetic noise interference and low response speed. In this paper, a new optically controlled variable damping system based on PLZT ceramic/electrorheological fluid (ERF) is proposed. The mathematical models of the photovoltage generated by PLZT ceramics and the pressure difference between the two ends of the microchannel are established and verified by numerical simulation in COMSOL Multiphysics. Meanwhile, with the increase of light intensity, liquid flow rate and decrease of microchannel height and width, the pressure difference shows an uptrend. Optically controlled variable damping system based on PLZT ceramic/ERF is a control method with the advantages of a clean excitation source, remote control, no electromagnetic interference, and fast response speed, and has a good application prospect in the field of vibration control and fluid control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.