Abstract

Controllable continuous release of functional materials from capsules is one of the unmet functions of theragnosis particles; on this way, understanding cargo-fluid interactions in vitro is an essential milestone. We develop a flexible platform to investigate single particle-fluid interactions utilizing a glass micropipette as a highly localized flow source around an optically trapped particle. In proof-of-concept experiments, this microparticle is sensitive to local microflow distribution, thus serving as a probe. The very same flows are capable of the particle rotating (i.e., vaterite drug cargo) at frequencies dependent on the mutual particle-pipette position. Platform flexibility comes from different interactions of a tweezer (optical forces) and a pipette (mechanical/hydrodynamical) with a microparticle, which makes this arrangement an ideal microtool. We studied the vaterite dissolution kinetics and demonstrated that it can be controlled on demand, providing a wide cargo release dynamic rate. Our results promote the use of inorganic mesoporous nanoparticles as a nanomedicine platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.