Abstract

The optically and thermally induced electron transfer pathways of highly symmetrical (D(3)) hexaarylbenzene systems with six triarylamine redox sites have been investigated. Owing to slightly different local redox potentials, the radical trication could be selectively generated by electrochemical methods. This trication shows a strong intervalence charge-transfer band in the near infrared (NIR) that was measured by spectroelectrochemistry and analysed using multi-dimensional Mulliken-Hush theory. Quantum chemical AM1 CI calculations indicate that there is no optically induced concerted three-electron transfer that transforms the ground state into a state in which all three positively charged triarylamine moieties change place with their neutral neighbours. The potential energy surface of the ground state was constructed by using quadratic potentials. From this potential surface it is apparent that there is also no thermally allowed concerted three-electron transfer pathway. Instead, three consecutive one-electron transfer steps are necessary for this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call