Abstract
AbstractWe have studied the onset of dissipation in quantum Hall systems (QHSs), patterned in various geometries (Hall bars, meanders and Corbino rings) from wafers with heterojunctions (GaAs/GaAlAs) and HgTe quantum wells with adjacent HgCdTe barriers. The QH samples were excited by electrical pulses with pulse durations tP of 0.5 ns ≤ tP ≤ 180 ns or by illumination with electromagnetic waves of 1.7 THz ≤ f ≤ 2.5 THz. These waves were either emitted coherently by a pulsed p‐Ge laser system or by a thermal source. In the case of excitation by electric pulses, it is necessary to exceed a certain critical pulse length $ t ^{\rm c}_{\rm P} $ which is a function of various extrinsic parameters and sample properties. For $ t _{\rm P} < t ^{\rm c}_{\rm P} $ no dissipation occurs inside the QHSs. Also, using THz illumination, the QHSs can be driven to dissipation. We found different mechanisms to be responsible for the photoresponse (PR) of the QHSs: non‐resonant (bolometric) and resonant (cyclotron resonance) contributions to the PR of the QHSs. First attempts to develop a quantitative model for the observed data are made. We are able to describe a part of the observations by either a drift model or a two‐level model. The quantitative agreement of these calculations with the measured data is, however, limited. This is due to the simplicity of the models applied so far and to the complex behaviour of QHSs when nonlinearly excited. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.