Abstract
Two new C2 and D2 symmetrical dioxatetraaza 18-membered macrocycles [(R,R)-1 and (S,S,S,S)-2] are efficiently synthesized in enantiomerically pure forms by a chemoenzymatic method starting from (+/-)-trans-cyclohexane-1,2-diamine. The protonation constants and the binding constants with different chiral dicarboxylates are determined in aqueous solution by means of pH-metric titrations. The triprotonated form of (S,S,S,S)-2 shows moderate enantioselectivity with malate and tartrate anions (deltadeltaG=0.62 and 0.66 kcal mol(-1), respectively), being the strongest binding observed in both cases with the L enantiomer. Good enantiomeric discrimination is obtained with tetraprotonated (R,R)-1 and N-acetyl aspartate, the complex with the D-enantiomer being 0.92 kcalmol(-1) more stable than its diastereomeric counterpart. Despite the lack of enantioselectivity of tri- and tetraprotonated (R,R)-1 for the tartrate anion, a very good diastereopreference for meso-tartrate is found. All these experimental results allow us to propose a model for the host-guest structure based on coulombic interactions and hydrogen bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.