Abstract

In this paper, a theoretical framework for Optical Wireless Communication using RGB color model with computer monitor display and digital camera is proposed. The motivation is to find a cheaper alternative to physical network switches and wired and optical cables in communication networks that can be leveraged for computer clusters, thus reducing time and costs for purchase, setup, maintenance, power consumption and cooling. Also, providing better data transfer rates, scalability and band width conservation. The framework is distinguished from related work by the use of RGB for data encoding at various bit-depths. Greater data transfer rates than existing Optical Wireless Communication systems are possible. A computer monitor displays a grid of changing colors controlled by a transmitting host. The color in a grid cell represents one or more data bits as per the RGB codes used. The RGB codes can be computed by logically partitioning the RGB cube, a geometrical representation of the RGB model. A camera on a receiving host, samples the colors to obtain the data bits. Mathematical expressions are derived to compute the RGB codes and mappings to data bits. The upper bound of the data rate is derived and compared with the well-known Shannon communication theorem. The framework is extended to include an array of digital cameras for parallel data copy in a computer cluster and the data rate is determined. Theoretically, the data rate can increase beyond the Gigabit/second realm, and into Terabit/second realm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.