Abstract

We show both theoretically and numerically that if an optical vortex beam has a symmetric or almost symmetric angular harmonics spectrum [orbital angular momentum (OAM) spectrum], then the order of the central harmonic in the OAM spectrum equals the normalized-to-power OAM of the beam. This means that an optical vortex beam with a symmetric OAM spectrum has the same topological charge and the normalized-to-power OAM has an optical vortex with only one central angular harmonic. For light fields with a symmetric OAM spectrum, we give a general expression in the form of a series. We also study two examples of form-invariant (structurally stable) vortex beams with their topological charges being infinite, while the normalized-to-power OAM is approximately equal to the topological charge of the central angular harmonic, contributing the most to the OAM of the entire beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.