Abstract
An optical receiver concept for binary signals with performance approaching the quantum limit at low average signal energies is developed and analyzed. A conditionally nulling receiver that reaches the quantum limit in the absence of background photons has been devised by Dolinar, however this receiver requires ideal optical combining and complicated real-time shaping of the local field, hence tends to be difficult to implement at high data rates. A simpler nulling receiver that approaches the quantum limit without complex optical processing, suitable for high-rate operation has been suggested earlier by Kennedy. Here we formulate a vector receiver concept that incorporates the Kennedy receiver together with a physical beamsplitter, but also utilizes the reflected signal component to improve signal detection. It is found that augmenting the Kennedy receiver with classical coherent detection at the auxiliary beamsplitter output, and optimally processing the vector observations, always improves on the performance of the Kennedy receiver alone, significantly so at low average photon rates. This is precisely the region of operation where modern codes approach channel capacity. It is also shown that the addition of background radiation has little effect on the performance of the coherent receiver component, suggesting a viable approach for near quantum-limited performance in high background environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.