Abstract

We characterize the optical variability properties of eight lobe-dominated radio quasars (QSOs): B2 0709$+$37, FBQS J095206.3$+$235245, PG 1004$+$130, [HB89] 1156$+$631, [HB89] 1425$+$267, [HB89] 1503$+$691, [HB89] 1721$+$343, 4C $+$74.26, systematically monitored for a duration of 13 years since 2009. The quasars are radio-loud objects with extended radio lobes that indicate their orientation close to the sky plane. Five of the eight QSOs are classified as giant radio quasars. All quasars showed variability during our monitoring, with magnitude variations between 0.3 and 1 mag for the least variable and the most variable QSO, respectively. We performed both structure function (SF) analysis and power spectrum density (PSD) analysis for the variability characterization and search for characteristic timescales and periodicities. As a result of our analysis, we obtained relatively steep SF slopes ($\alpha$ ranging from 0.49 to 0.75) that are consistent with the derived PSD slopes ($\sim$2--3). All the PSDs show a good fit to single power law forms, indicating a red-noise character of variability between $\sim$13 years and weeks timescales. We did not measure reliable characteristic timescales of variability from the SF analysis which indicates that the duration of the gathered data is too short to reveal them. The absence of bends in the PSDs (change of slope from $\geq$1 to $\sim$0) on longer timescales indicates that optical variations are most likely caused by thermal instabilities in the accretion disk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call