Abstract

We report an experimental demonstration of optical two-dimensional coherent spectroscopy (2DCS) in cold atoms. The experiment integrates a collinear 2DCS setup with a magneto-optical trap (MOT), in which cold rubidium (Rb) atoms are prepared at a temperature of approximately 200 µK and a number density of 1010 cm-3. With a sequence of femtosecond laser pulses, we first obtain one-dimensional second- and fourth-order nonlinear signals and then acquire both one-quantum and zero-quantum 2D spectra of cold Rb atoms. The capability of performing optical 2DCS in cold atoms is an important step toward optical 2DCS study of many-body physics in cold atoms and ultimately in atom arrays and trapped ions. Optical 2DCS in cold atoms/molecules can also be a new avenue to probe chemical reaction dynamics in cold molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.