Abstract

The high elevation, complex topography, and unique atmospheric circulations of the Tibetan Plateau (TP) make its optical turbulence characteristics different from those in low-elevation regions. In this study, the characteristics of the atmospheric refractive index structure constant (Cn2) profiles in the Lhasa area at different strength states of the Asian summer monsoon anticyclone (ASMA) are analyzed based on precious in situ sounding data measured over the Lhasa in August 2018. Cn2 in the upper troposphere–lower stratosphere fluctuates significantly within a few days during the ASMA, particularly in the upper troposphere. The effect of the ASMA on Cn2 varies among the upper troposphere, tropopause, and lower stratosphere. The stronger and closer the ASMA is to Lhasa, the more pronounced is the “upper highs and lower lows” pressure field structure, which is beneficial for decreasing the potential temperature lapse rate. The decrease in static stability is an important condition for developing optical turbulence, elevating the tropopause height, and reducing the tropopause temperature. However, if strong high-pressure activity occurs at the lower pressure layer, such as at 500 hPa, an “upper highs and lower highs” pressure field structure forms over the Lhasa, increasing the potential temperature lapse rate and suppressing the convective intensity. Being almost unaffected by low-level atmospheric high-pressure activities, the ASMA, as the main influencing factor, mainly inhibits Cn2 in the tropopause and lower stratosphere. The variations of turbulence intensity in UTLS caused by ASMA activities also have a great influence on astronomical parameters, which will have certain guiding significance for astronomical site testing and observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call