Abstract

Optical trapping of liposomes is a useful tool for manipulating these lipid vesicles for sampling, mechanical testing, spectroscopic observation, and chemical analysis. Through the use of confocal Raman microscopy, this study addresses the effects of optical forces on the structure of unilamellar, dipalmitoylphosphatidylcholine (DPPC) vesicles, both optically trapped in solution and adhered to a coverslip. The energy and forces involved in optical trapping of lipid vesicles were derived in terms of the dielectric contrast between the phospholipid membrane and the surrounding solution; reflection forces at the membrane/water interface were found to be negligible. At optical powers of 9 mW and greater, unilamellar liposomes trapped in bulk solution experience a gradient force sufficiently strong to bend the vesicle membrane, so that a second bilayer from the same vesicle is drawn into the optical trap, with an energy of approximately 6 x 10(-13) erg. For vesicles adhered to a coverslip, the confocal probe can be scanned through the attached vesicle. Optical forces are insufficient to detach the bilayer that is adhered to the glass; however, the upper DPPC bilayer can be manipulated by the optical trap and the shape of the vesicle distorted from a spherical geometry. The effect of calcium ion on the flexibility of membrane bilayers was also tested; with 5 mM calcium ion in solution, the lipid bilayer of a surface-attached liposome is sufficiently rigid so that it cannot be distorted at moderate laser powers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.