Abstract
We investigate the spatial orientation dependence of optical trapping forces and intrinsic torques exerted on spheroidal Rayleigh particles under irradiation of highly focused linearly and circularly polarized beams. It is revealed that the maximal trapping forces and torques strongly depend on the orientation of the spheroid, and the spheroidal particle is driven to be stably trapped at the beam focus with its major axis perpendicular to the optical axis. For a linearly polarized trapping beam, the optical torque is always perpendicular to the plane containing the major axis and the polarization direction of the incident beam. Therefore, the spheroid tends to rotate its major axis along with the polarization direction. However, for a circularly polarized trapping beam, the optical torque is always perpendicular to the plane containing the major axis and the optical axis. What is different from the linear polarization case is that the spheroid tends to have the major axis parallel to the projection of the major axis in the transverse plane. The optical torque in the circular polarization case is half of that in the linear polarization case. These optical trapping properties may be exploited in practical optical manipulation, especially for the nonspherical particle's trapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.