Abstract
Abstract We present optical trapping behavior of 50-nm-sized polystyrene beads, suspended in water medium, by femtosecond pulsed laser beam. In addition to a higher number of nanoparticles trapped at the focal spot by the ultrashort laser pulses compared with that by continuous-wave laser, the nanoparticles are scattered out of the focal spot by the laser pulses to the surrounding area. The scattered particles form a partially opened folding fan-shaped bright locus in two opposite directions, in an alternating manner, perpendicular to the laser polarization. To understand those phenomena, we analyzed radiation (gradient and scattering) force of femtosecond laser pulses and their temporal force exerted on the dielectric spherical nanoparticles by taking into account the impulsive peak power and the axial component of electric light field produced by high numerical aperture of objective lens. We show that the axial electric field is responsible for lateral components of the scattering and temporal forces, and hence, controls the scattering directions of the Rayleigh particles. These findings provide important information about the dynamic optical trapping of the Rayleigh particles by highly focused ultrashort laser pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.