Abstract

We study the optical trapping, rotating and moving of 5-mm polystyrene microspheres in asymmetrical crescent-shaped Bessel-Gaussian laser beams that carry the orbital angular momentum. The beams are generated by a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. It is shown experimentally that while the topological charge of the beam remains unchanged, an increasing asymmetry of the beam causes a near-linear increase in the microparticles velocity. This serves to confirm that the orbital angular momentum (OAM) of the beam depends in a linear manner on the beam's asymmetry. The use of crescent-shaped beams can reduce the thermal exposure of biological objects during optical micromanipulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.