Abstract

Fluorescence imaging (FI) employing near-infrared (NIR) light within the range of ~750-1350 nm enables biomedical imaging several millimeters beneath the tissue surface. More recent investigations into the short-wave IR (SWIR) transparency windows between ~1550-1870 and 2100-2300 nm highlight their superior capabilities. This research presents a comparison of IR-FI of PbS quantum dots, emitting at 990, 1310, and 1580 nm, through the mouse scalp skin, skull, and brain. The SWIR fluorescence is the most effectively transmitted signal, showing particularly significant enhancement when passing through the skull, which causes high light scattering. For the analysis of the imaging results and light propagation through the organs, their spectra of attenuation, absorption, and scattering coefficients are measured. In view of biomedical imaging, attenuation due to light scattering is a more destructive factor. Hence, the spatial resolution and imaging contrast can be improved by operating in SWIR due to decreased light scattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.