Abstract
Optically active spin systems coupled to photonic cavities with high cooperativity can generate strong light-matter interactions, a key ingredient in quantum networks. However, obtaining high cooperativities for quantum information processing often involves the use of photonic crystal cavities that feature a poor optical access from the free space, especially to circularly polarized light required for the coherent control of the spin. Here, we demonstrate coupling with a cooperativity as high as 8 of an InAs/GaAs quantum dot to a fabricated bullseye cavity that provides nearly degenerate and Gaussian polarization modes for efficient optical accessing. We observe spontaneous emission lifetimes of the quantum dot as short as 80 ps (an ∼15 Purcell enhancement) and a ∼80% transparency of light reflected from the cavity. Leveraging the induced transparency for photon switching while coherently controlling the quantum dot spin could contribute to ongoing efforts of establishing quantum networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.