Abstract

Since the discovery of a laser-like behavior in a powder of Na5La1−xNdx(MoO4)4 crystallites [1], the so-called “random (powder) laser materials” have attracted considerable attention in the last few years [2-4]. The study of these compounds is interesting because of their potential applications as compact and low cost lasers which do not need any mirrors. Due to the scattering processes present in random lasers, their optical properties are expected to be quite different from those of conventional lasers. In order to understand the operation regime of random lasers, a detailed knowledge of the propagation of pump and fluorescence light would be necessary in these materials. Although the optical transmission of light in certain random laser materials has been experimentally studied [5], it is not clear whether the theoretical models proposed are able or not to predict the values experimentally obtained for the pumping penetration depth in these materials. The purpose of this work is to analyze the light propagation in stationary conditions through random laser materials and to characterize quantitatively the scattering and absorption processes. The theoretical calculations have been made for the powder laser materials studied in reference [5].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.