Abstract

Optical transmission through a double-layer compound metallic grating (DCMG) composed of two identical compound metallic gratings (CMGs) with two subwavelength slits filled with different dielectrics inside each period is investigated by using the finite-difference time-domain method. The results show that the transmission properties of the DCMG are dependent on both the separation G between the two metallic layers and the phase configurations of the electromagnetic waves at the exits of adjacent slits of each layer. When a suitable separation (G ∼ 300 nm) is chosen, for the DCMG a notable transmission peak emerges at a certain wavelength, at which phase resonance appears for the corresponding CMG, while the transmission spectra of the corresponding double-layer simple metallic gratings (DSMGs) with the separation (G ∼ 300 nm) exhibit unexpected transmission suppression in a broad spectral region. When G > 340 nm, the intensity of the transmission around the wavelength for the DCMG gradually decreases down to almost zero as G increases, while the high transmission is nearly maintained for the corresponding DSMGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.