Abstract

Abstract We employ a modified four-layer-medium transmission model to extract the thickness, wavelength-dependent refractive index, band gap and band tail of highly ordered porous alumina membranes (PAMs) anodized in oxalic acid, from visible and ultraviolet optical transmission spectra. The yielded thickness as a function of second-anodization time is in good agreement with the scanning electron microscope data, as well as the theoretical results from the current density–time characteristics. The pore widening process in phosphoric acid reveals inhomogeneous dissolution vertical to the nanopores. From the refractive index results, the nonuniform distribution of anions in the host alumina has been suggested in oxalic acid PAMs. Moreover, compared with bulk alumina, the observation of band gap reduction and band tails in PAMs is related with the electronic interband transition from the valence band to unoccupied defect states located in the band gaps, possibly originating from the oxygen vacancies (F+ centers) and oxalic impurities in PAMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.