Abstract
ABSTRACTWe demonstrate optical transmission measurements performed on 1.2 μm thick GaMnN films grown by metalorganic chemical vapor deposition on (0001) sapphire substrates. According to the data acquired from these measurements, Mn forms a deep acceptor band at 1.4 eV above the valance band of GaMnN. Full width at half maximum of this absorption band increases from 107 meV to 198meV as the Mn concentration increases from 0.3% to 1.6 %; which indicates that this band becomes wider as the concentration of Mn increases in the lattice. A broad absorption band starting at 1.9eV and extending to the band edge of GaMnN was also determined. This was attributed to the transition from the Mn energy band to the conduction band edge of GaMnN. Absorption at both of these bands scales with the Mn concentration and thickness of the films. The effect of co-doping of GaMnN films with magnesium on the transmission spectra was also investigated. The absorption band initially observed at 1.4 eV was shifted to 1.6 eV as a result of introduction of Magnesium into the lattice of GaMnN. From these results we conclude that Mn is incorporated in the lattice and forms an energy band in the bandgap of GaMnN. The width of this energy band is also a function of the Mn concentration in GaMnN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.