Abstract
Breathtaking innovations in optical imaging have opened new exciting avenues for science, industry, and medicine over the last few decades. One of such innovations is optical time-stretch imaging—an emerging method for ultrafast optical imaging that builds on temporally stretching broadband pulses by using dispersive properties of light in both spatial and temporal domains. It achieves continuous image acquisition at an ultrahigh frame rate of 10–1000 million frames per second by overcoming technical and fundamental limitations that exist in traditional imaging methods. By virtue of its inherent affinity with optical signal processing, optical time-stretch imaging can be combined with various optical techniques such as amplification, nonlinear processing, compressive sensing, and pattern correlation to realize unique capabilities that are not possible with the traditional imaging methods. Applications enabled by such capabilities are versatile and include surface inspection, surface vibrometry, particle analysis, and cell screening. In this paper, we review the principles and limitations of conventional optical imaging, the principles and applications of optical time-stretch imaging, and discuss our future perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.