Abstract

Six photonic crystal fibers (PCFs) were characterized at NIT laboratory participating in COST Action 299 FIDES, allowing for comparisons of properties and their dependence on fiber design. Samples tested included three nonlinear fibers with germanium doped core, two fibers with un-doped core and honeycomb photonic structure, and a PANDAlike PCF with a pair of large holes along an un-doped core. Tests included optical time domain reflectometer (OTDR) measurements, spectral loss, polarization mode dispersion (PMD) and its variations with temperature, fiber twist and axial strain. Elastooptic coefficient was measured for 2 fibers. Most samples exhibited high PMD, up to 3 ps/m. PMD was usually reduced by twisting the fiber, but twist sensitivity varied widely. The PANDA-like PCF, however, had PMD virtually unaffected by both twist and tensile strain; the latter property made it different from true PANDA fiber tested for comparison. Intensity of backscattering in each PCF was stronger compared to a standard telecom single mode fiber (SMF), by a factor up to 110x.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.