Abstract
We develop a new theory of the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. It applies to arbitrary lossless backgrounds and quite general probing fields. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. The generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks and invisible scatterers and wireless communications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a novel reactive optical theorem related to the reactive power changes. The developed approach naturally leads to three optical theorem indicators or statistics which can be used to detect changes or targets in unknown complex media. The paper includes numerical simulation results that illustrate the application of the derived optical theorem results to change detection in complex and random media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.