Abstract

Macroscopic systems subjected to injection and dissipation of energy can exhibit complex spatiotemporal behaviors as result of dissipative self-organization. Here, we report a one- and two-dimensional pattern forming setup, which exhibits a transition from stationary patterns to spatiotemporal chaotic textures, based on a nematic liquid crystal layer with spatially modulated input beam and optical feedback. Using an adequate projection of spatiotemporal diagrams, we determine the largest Lyapunov exponent. Jointly, this exponent and Fourier transform allow us to distinguish between spatiotemporal chaos and amplitude turbulence concepts, which are usually merged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.