Abstract
Lateral organisation of cellular membranes, particularly the plasma membrane, is of benefit to the cell as it allows complicated cellular processes to be regulated and efficient. For example, trafficking and secretion of molecules can be targeted and directed, cells polarised and signalling events modulated and propagated. The fluid mosaic model allows for significant heterogeneity on the part of the lipids themselves and of membrane associated proteins. By exploiting the tendency of complex lipid bilayers to undergo spontaneous or induced phase-separation into non-miscible domains, the cell could achieve this desired spatial organisation. While phase-separation is readily observed in simple, artificial bilayers, its occurrence in physiological membranes remains controversial. This stems mainly from our inability to image lipid microdomains directly - possibly due to their small size, short lifespan and/or morphological similarity to the bulk membrane. In this review, we seek to examine the techniques used to try to image membrane lipid microdomains, concentrating mainly on optical microscopy techniques that are applicable to live cells. We also look at novel emerging instruments and methods that promise to overcome our current technological limitations and shed new light on these important structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.