Abstract

A new capability of our well-known NEMO 3-D simulator (Ref. Klimeck et al., 2007 [10]) is introduced by carefully investigating the utility of III–V semiconductor quantum dots as infrared photodetectors at a wavelength of 1.2–1.5 μm. We not only present a detailed description of the simulation methodology coupled to the atomistic sp3d5s∗ tight-binding band model, but also validate the suggested methodology with a focus on a proof of principle on small GaAs quantum dots (QDs). Then, we move the simulation scope to optical properties of realistically sized dome-shaped InAs/GaAs QDs that are grown by self-assembly and typically contain a few million atoms. Performing numerical experiments with a variation in QD size, we not only show that the strength of ground state inter-band light transitions can be optimized via QD size-engineering, but also find that the hole ground state wavefunction serves as a control factor of transition strengths. Finally, we briefly introduce the web-based cyber infrastructure that is developed as a government-funded project to support online education and research via TCAD simulations. This work not only serves as a useful guideline to experimentalists for potential device designs and other modelers for the self-development of optical TCAD, but also provides a good chance to learn about the science gateway project ongoing in the Republic of Korea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.