Abstract

A mechanism of longitudinal confinement of optical energy via coupled plasmon modes is proposed in chains of noble metal nanoparticles embedded in a graded dielectric medium, which is analogous to the confinement of electrons in semiconductor quantum wells. In these systems, one can control the transmission of optical energy by varying the graded refractive index of the host medium or the separation between the nanoparticles to realize the photonic analog of electronic transistors. Possible passband tunability by nanoparticle spacing and modulation of the refractive index in the host medium have been presented explicitly and compared favorably with numerical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.