Abstract
Organolead halide perovskites have emerged as potential building blocks for photovoltaic and optoelectronic devices. Yet the underlying fundamental physics is not well understood. There is lack of agreement on the electronic band structures and binding energies of coupled electron-hole pairs (excitons), which drive the photophysical processes. In this work, we conducted temperature-dependent reflectance and photoluminescence experiments on high-quality ${\mathrm{CH}}_{3}{\mathrm{NH}}_{3}{\mathrm{PbBr}}_{3}$ single crystals. Two direct optical transitions corresponding to intrinsic free-excitons are clearly resolved, showing excellent consistence between the low-temperature ($T=10$ K) reflectance and photoluminescence spectra. Remarkably, the excitons have different binding energies and behave oppositely with temperature, suggesting distinctive origins. Moreover, the asymmetric photoluminescence profile is counterintuitively dominated by the high-energy exciton that is explained by a long relaxation time between levels and by the favorable generation rate of electron-hole pairs at the high-energy band. Our study opens access to the intrinsic properties of ${\mathrm{CH}}_{3}{\mathrm{NH}}_{3}{\mathrm{PbBr}}_{3}$ and sheds light to reconcile the large range of binding energies reported on these emergent direct band-gap semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.