Abstract

We use photoluminescence and photoluminescence excitation experiments with and without magnetic field to study the electronic properties of InxGa1-xAs/GaAs quantum wells grown on vicinal (001) substrates. We analyze samples of a wide range of In contents (from 17% to 35%) and various misorientation angles (up to 6°). The optical quality of the samples increases with the tilt angle and is explained as mainly controlled by alloy disorder. A fit of the electron-heavy-hole transitions is performed by means of a method which consists of the resolution of a two-dimensional Schrödinger equation and which includes two adjustable parameters: the In surface segregation energy Es and the length ξ in which the hydrostatic pressure becomes biaxial as defined by the Nagai’s model [J. Appl. Phys. 45, 3789 (1974)]. For a given angle and In content the differences between the PL peaks of vicinal and nominal samples present a maximum as a function of the well width, a fact which is well explained by our theoretical model. A study of the exciton dimensionality has been also carried out using models that take dimensionality into account in different manners.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.