Abstract
In this paper cadmium telluride based, thin-film solar cell design using a 2D Photonic Crystal structure is proposed. CdTe technology is considered as having the best cost to efficiency ratio for the solar cells. A theoretical optical study and active layer thickness optimization has been presented using photonic crystal as a light-trapping structure placed at the back of the active layer. To reduce the cost of solar cell the active layer thickness is required to be kept small (~0.7 microns), but this results in weak absorption of incident spectrum. It is observed that these periodic structures help to enhance the absorption within the cell by enhancing the virtual thickness for high wavelength photons without letting the physical thickness of the active layer to increase. These structures result in improved scattering and coupling of incident photons. The proposed design has achieved the short circuit current of 29.25 mA/cm<sup>2</sup> at AM 1.5 is achieved. Here all the parameters are optimized using rigorous coupled-wave analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.