Abstract

We study the optically induced torques in thin film ferromagnetic layers under excitation by circularly polarized light. We study cases both with and without Rashba spin-orbit coupling using a 4-band model. In the absence of Rashba spin-orbit coupling, we derive an analytic expression for the optical torques, revealing the conditions under which the torque is mostly derived from optical spin transfer torque (i.e. when the torque is along the direction of optical angular momentum), versus when the torque is derived from the inverse Faraday effect (i.e. when the torque is perpendicular to the optical angular momentum). We find the optical spin transfer torque dominates provided that the excitation energy is far away from band edge transitions, and the magnetic exchange splitting is much greater than the lifetime broadening. For the case with large Rashba spin-orbit coupling and out-of-plane magnetization, we find the torque is generally perpendicular to the photon angular momentum and is ascribed to an optical Edelstein effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.