Abstract

Spectroscopic properties of Pr3+ and Er3+ -doped KPb2Br5 crystals were investigated for possible applications in eye-safe lasers as well as Ce3+-doped KPb2Cl5 and Eu2+-doped KPb2Cl5/KPb2Br5 for potential radiation detectors. The studied materials were synthesized through careful purification of starting materials including multi-pass zone-refinement and halogenation. The growth of the purified materials was then carried out through the vertical or horizontal Bridgman technique. Under resonant excitation, infrared (IR) emissions at ~1.5 μm and ~1.6 μm were observed from Er:KPb2Br5 and Pr:KPb2Br5 corresponding to the 4f-4f transitions of 4I13/2→4I15/2 and 3F4,3F3→3H4, respectively. Emission characteristics of the ~1.5 μm Er3+ and ~1.6 μm Pr3+ transitions including IR to visible upconversion emission studies were also discussed. Under xenon lamp excitation, spectroscopic results showed allowed 5d-4f Ce3+ emission centered at ~375 nm in Ce3+-doped KPb2Cl5. Fast photoluminescence decay time of ~30-50 ns was attained from Ce:KPb2Cl5, while X-ray excited emission at ~530 nm appeared to originate from the host KPb2Cl5 crystal. In addition, a commercial Ce:YAP (yttrium aluminum perovskite, YAlO3) crystal was included in this study for comparison. Eu2+ 5d-4f emissions were not observed from Eu2+-doped KPb2Cl5 and KPb2Br5 crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call