Abstract

Results of measurements of the temperature dependence of the absorption spectra of YBa2Cu3O6+x films in the antiferromagnetic and metallic (superconducting, Tc=88 K) phases are presented. The temperature evolution of the absorption bands, which are diagnostic for the electron and spin correlations and the degree of metallization (oxygen–copper hybridization), is investigated in the energy region 1.3–2.6 eV. It is shown that in the metallic phase in the pseudogap state below T*=120±10 K there is a sharp rise of these absorption bands characteristic of the antiferromagnetic (AF) phase, including the electron–two-magnon (A+J) band, which reflects the development of strong AF correlations. In contrast to the insulator, here the (A+J) band has a fine structure due to the creation of both interacting and noninteracting magnons, and it coexists with the bands due to the strong metallization. The results demonstrate phase separation at Tc<T<T*, with the formation of a stripe superstructure consisting of metallic and insulating (with short-range antiferromagnetic ordering) regions. This superstructure is preserved in the superconducting state, and an additional enhancement of the AF correlations occurs at the superconducting transition. Taken together, the results provide independent optical evidence of the undoubted participation of AF correlations in the superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.