Abstract
A precisely controlled chemical modification of exfoliated graphene on a substrate was achieved by solution-phase oxidation. The structural and electrical evolution of graphene induced by oxygen-related defects was investigated using micro-Raman and photoluminescence spectroscopy. The sp2-hybrid carbon network in monolayer graphene was found to gradually decrease with increasing degree of oxidation. The size of the graphene quantum dots was finally reduced to about 1 nm, which exhibited an energy band gap of 2 eV. The double-layer graphene showed a symmetry breaking induced by the defects. The process of solution modification may provide a facile method to tailor the electrical properties of graphene on a chip for constructing carbon-based nanoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.