Abstract
The effects of γ-ray irradiation (10, 100 kGy) on Gd3+-doped phosphate glass were evaluated. Glass irradiated at 100 kGy was characterized alongside the pristine by differential scanning calorimetry, Fourier transform-infrared spectroscopy and Raman scattering, wherein a lack of alteration in thermal and structural properties was supported. Yet, absorption bands developed around 500 nm with γ-ray dose indicating phosphorus oxygen hole center defects. Optical band gap and Urbach energies exhibited decreasing and increasing trends, respectively, reflecting the influence of trapped electrons and increased disorder/defects. By exciting γ-irradiated samples at 265 nm, blue radio-photoluminescence was observed where intensity increased with dose. Decay curves measured monitoring 415 nm emission showed first-order kinetics suggested to arise from phosphorus electron centers. Emission from Gd3+ was quenched with gamma-ray dose while the 6P7/2 emitting state lifetimes decreased. Correlations between Gd3+ emission intensities and lifetimes with optical band gaps suggest electron center defects perform as ‘energy sinks’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.