Abstract

This research investigates the optical spectroscopic characteristics of silver-doped phosphate antibacterial glasses with chemical compositions 42P2O5–42ZnO–(16−x) Na2O, (where x = 0, 0.4, 0.8, 1.2, 1.6 Ag2O). The glass samples were prepared by conventional melting quenching techniques. The structures of all the homogenous prepared glasses were studied by XRD, and UV–Vis spectroscopy. The glass formability was tested and the amorphous nature was approved using XRD-technique. Archimedes method has been employed to measure the density of the samples hence, the molar volume was calculated. The molar volume and density shows discontinuity of measurements under effect of increasing Ag2O concentration. The optical spectroscopic analyses for the obtained glass samples has been investigated over the whole range (190–2500 nm) for studying the effect of bandpass absorption glass filter, its color peak center and UV cut-off. Transmittance of some glass samples showed cut-off for UV and short visible wavelengths in some glass samples, so these samples composition can be considered as long-pass edge filters and from band stop ranges started from 190 to 515 nm and increase by increasing doped silver concentration. The optical energy gap decreases by increasing the Ag2O concentration from 4.43 to 3.61 eV. The refractive index and extinction coefficient and some optical properties are studied and the results indicate clearly that there is no high remarkable change with changing wavelength. The refractive index is found to be increased by increasing the Ag2O content. The wavelength dependence of extinction coefficient and the dielectric constants exhibit higher values for higher Ag2O contents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call