Abstract

Gallium nitride (GaN) metal-insulator-semiconductor field-effect transistor with regrown by selected area metal organic vapor-phase-epitaxy n+ layer has been analyzed by micro-Raman and microphotoluminescence (micro-PL) spectroscopy. The material properties of the regrown n+ layer and the intrinsic layer in the gate region were extracted by using both spectroscopies. The free-carrier concentration of the regrown GaN layer and the intrinsic layer were determined by line shape analysis of the coupled plasmon-phonon mode to be 4.7×1017 and <3×1016cm−3, respectively. The inefficient substitutions of Ga vacancy (VGa) by Si result in relatively low carrier concentration in the regrown GaN layer. From the shift of E2(2) Raman peak and the near-band-edge (NBE) PL peak, the biaxial compressive stress in the intrinsic layer was found to be 0.4GPa. The residual stress was found to be fully relaxed in the regrown layer. The Si doping concentration in the regrown layer was determined to be 2×1019cm−3 based on the potential fluctuations introduced redshift of its NBE PL peak.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call