Abstract

We present exact results that give insight into how interactions lead to transport and superconductivity in a flat band where the electrons have no kinetic energy. We obtain bounds for the optical spectral weight for flat-band superconductors that lead to upper bounds for the superfluid stiffness and the two-dimensional (2D) [Formula: see text] We focus on on-site attraction [Formula: see text] on the Lieb lattice with trivial flat bands and on the π-flux model with topological flat bands. For trivial flat bands, the low-energy optical spectral weight [Formula: see text] with [Formula: see text] , where n is the flat-band density and Ω is the Marzari-Vanderbilt spread of the Wannier functions (WFs). We also obtain a lower bound involving the quantum metric. For topological flat bands, with an obstruction to localized WFs respecting all symmetries, we again obtain an upper bound for [Formula: see text] linear in [Formula: see text] We discuss the insights obtained from our bounds by comparing them with mean-field and quantum Monte Carlo results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.