Abstract
We study spatial and temporal solitons in the $\mathcal{PT}$ symmetric coupler with gain in one waveguide and loss in the other. Stability properties of the high- and low-frequency solitons are found to be completely determined by a single combination of the soliton's amplitude and the gain/loss coefficient of the waveguides. The unstable perturbations of the high-frequency soliton break the symmetry between its active and lossy components which results in a blowup of the soliton or a formation of a long-lived breather state. The unstable perturbations of the low-frequency soliton separate its two components in space blocking the power drainage of the active component and cutting the power supply to the lossy one. Eventually this also leads to the blowup or breathing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.