Abstract
Optical solitons in multimode fibers were predicted 40 years ago and extensively investigated theoretically. Transmission experiments in nonlinear multimode fibers have gained renewed interest, motivated by their potential to extend the capacity of long-distance transmission systems; only in the last few years, new experiments have revealed unexpected properties of optical solitons propagating in graded-index and step-index multimode fibers, partially re-writing the existing theory. Here we provide an overview of the recent experimental, numerical, and theoretical studies that revealed those new properties. It will be shown that multimode fiber solitons form with specific pulse width and energy dependent on the wavelength, and that they naturally evolve toward fundamental-mode Raman solitons. New soliton fission mechanisms, governed by the modal dispersion, will be explained. Possible applications in space-division multiplexed systems will be discussed. A recent thermodynamic approach to soliton condensation will be described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.