Abstract

This paper studies the dynamics of optical solitons in multi-dimensions with spatio-temporal dispersion and non-Kerr law nonlinearity. The integrability aspect is the main focus of this paper. Five different forms of nonlinearity are considered — Kerr law, power law, parabolic law, dual-power law and log law nonlinearity. The traveling wave hypothesis, ansatz approach and the semi-inverse variational principle are the integration tools that are adopted to retrieve the soliton solutions to the governing equation. As a result, several constraint conditions arise out of the integration process and represent necessary conditions for the existence of solitons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.