Abstract

We consider light propagation in a Kerr‐nonlinear 2D waveguide with a Bragg grating in the propagation direction and homogeneous in the transverse direction. Using Newton's iteration method we construct both stationary and travelling solitary wave solutions of the corresponding mathematical model, the 2D nonlinear coupled mode equations (2D CME). We call these solutions 2D gap solitons due to their similarity with the gap solitons of 1D CME (fiber grating). Long‐time stable evolution preserving the solitary fashion is demonstrated numerically despite the fact that, as we show, for the 2D CME no local constrained minima of the Hamiltonian functional exist. Building on the 1D study of [1], we demonstrate trapping of slow enough 2D gap solitons at localized defects. We explain the mechanism of trapping as resonant transfer of energy from the soliton to one or more nonlinear defect modes. For a special class of defects, we construct a family of nonlinear defect modes by numerically following a bifurcation curve starting at analytically or numerically known linear defect modes. Compared to 1D the dynamics of trapping are harder to fully analyze and the existence of many defect modes for a given defect potential causes that slow solitons store a part of their energy for virtually all of the studied attractive defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.