Abstract

We study solitary wave solutions of the higher order nonlinear Schrodinger equation for the propagation of short light pulses in an optical fiber. Using a scaling transformation we reduce the equation to a two-parameter canonical form. Solitary wave (1-soliton) solutions exist provided easily met inequality constraints on the parameters in the equation are satisfied. Conditions for the existence of N-soliton solutions (N>1) are determined; when these conditions are met the equation becomes the modified KdV equation. A proper subset of these conditions meet the Painleve plausibility conditions for integrability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.