Abstract

We theoretically investigate under which conditions nonlocal plasmon response in monolayer graphene can be detected. To this purpose, we study optical scattering off graphene plasmon resonances coupled using a subwavelength dielectric grating. We compute the graphene conductivity using the Random Phase Approximation (RPA) obtaining a nonlocal conductivity and we calculate the optical scattering of the graphene-grating structure. We then compare this with the scattering amplitudes obtained if graphene is modeled by the local RPA conductivity commonly used in the literature. We find that the graphene plasmon wavelength calculated from the local model may deviate up to $20\%$ from the more accurate nonlocal model in the small-wavelength (large-$q$) regime. We also find substantial differences in the scattering amplitudes obtained from the two models. However, these differences in response are pronounced only for small grating periods and low temperatures compared to the Fermi temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.