Abstract

Magneto-optical devices based on Bragg diffraction of light by magnetostatic waves (MSWs) offer the potential of large time-bandwidth optical signal processing at microwave frequencies of 1 to 20 GHz and higher. A thin-film integrated-optical configuration, with the interacting MSW and guided-optical wave both propagating in a common ferrite layer, is necessary to avoid shape-factor demagnetization effects. The underlying theory of the MSW-optical interaction is outlined, including the development of expressions for optical diffraction efficiency as a function of MSW power and frequency, device geometry, materials properties, and other relevant parameters. Recent experimental observations of anisotropic Bragg diffraction and collinear TE↔TM mode conversion induced by MSWs in yttrium iron garnet (YIG) thin films suggest that high-performance MSW integrated-optical devices are feasible. Diffraction levels as large as 4% (7-mm interaction length) and a modulation dynamic range of ∼30 db have been demonstrated. Potential signal processing applications are mentioned, including: spectrum analyzers, convolvers/correlators, deflectors, non-reciprocal optical isolators, and tunable narrowband optical filters. Advantages of these MSW-based devices over the analogous acousto-optical devices include: much greater operating frequencies, tuning through the MSW dispersion relation by varying either the rf frequency or the applied bias magnetic field, simple MSW transducer structures (e.g., a single stripline), and the potential for very high diffraction efficiencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.